Tracking energy transfer between light harvesting complex 2 and 1 in photosynthetic membranes grown under high and low illumination.

نویسندگان

  • Larry Lüer
  • Vladimíra Moulisová
  • Sarah Henry
  • Dario Polli
  • Tatas H P Brotosudarmo
  • Sajjad Hoseinkhani
  • Daniele Brida
  • Guglielmo Lanzani
  • Giulio Cerullo
  • Richard J Cogdell
چکیده

Energy transfer (ET) between B850 and B875 molecules in light harvesting complexes LH2 and LH1/RC (reaction center) complexes has been investigated in membranes of Rhodopseudomonas palustris grown under high- and low-light conditions. In these bacteria, illumination intensity during growth strongly affects the type of LH2 complexes synthesized, their optical spectra, and their amount of energetic disorder. We used a specially built femtosecond spectrometer, combining tunable narrowband pump with broadband white-light probe pulses, together with an analytical method based on derivative spectroscopy for disentangling the congested transient absorption spectra of LH1 and LH2 complexes. This procedure allows real-time tracking of the forward (LH2 → LH1) and backward (LH2←LH1) ET processes and unambiguous determination of the corresponding rate constants. In low-light grown samples, we measured lower ET rates in both directions with respect to high-light ones, which is explained by reduced spectral overlap between B850 and B875 due to partial redistribution of oscillator strength into a higher energetic exciton transition. We find that the low-light adaptation in R. palustris leads to a reduced elementary backward ET rate, in accordance with the low probability of two simultaneous excitations reaching the same LH1/RC complex under weak illumination. Our study suggests that backward ET is not just an inevitable consequence of vectorial ET with small energetic offsets, but is in fact actively managed by photosynthetic bacteria.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Efficiency Light Harvesting by Carotenoids in the LH2 Complex from Photosynthetic Bacteria: Unique Adaptation to Growth under Low-Light Conditions

Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in th...

متن کامل

Clades of Photosynthetic Bacteria Belonging to the Genus Rhodopseudomonas Show Marked Diversity in Light-Harvesting Antenna Complex Gene Composition and Expression

Many photosynthetic bacteria have peripheral light-harvesting (LH) antenna complexes that increase the efficiency of light energy capture. The purple nonsulfur photosynthetic bacterium Rhodopseudomonas palustris produces different types of LH complexes under high light intensities (LH2 complex) and low light intensities (LH3 and LH4 complexes). There are multiple pucBA operons that encode the α...

متن کامل

Diffusion of light-harvesting complex II in the thylakoid membranes.

The light-harvesting complex II (LHCII) is the main energy absorber for photosynthesis in green plants, and its translocation between photosystems I and II is the primary means of energy redistribution between them. Using single-particle tracking, we performed the first measurement of the mobility of LHCII in the photosynthetic membranes in both the nonphosphorylated and the phosphorylated (P-L...

متن کامل

Energy transfer properties of Rhodobacter sphaeroides chromatophores during adaptation to low light intensity.

Time-resolved fluorescence spectroscopy was used to explore the pathway and kinetics of energy transfer in photosynthetic membrane vesicles (chromatophores) isolated from Rhodobacter (Rba.) sphaeroides cells harvested 2, 4, 6 or 24 hours after a transition from growth in high to low level illumination. As previously observed, this light intensity transition initiates the remodeling of the photo...

متن کامل

Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation

Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work agains...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 5  شماره 

صفحات  -

تاریخ انتشار 2012